C. U. Shah Science College, Ashram Road, Ahmedabad

Internal Test

Date	e: 16-03	B.Sc. Semester 6 Physics Paper-307 3-2015 Time: 1 hr 45 min	
=== Q-1	(a) and J	Prove that the solutions of Bessel's differential equation $J_m(x)$ $J_{-m}(x)$ are linearly independent if 'm' is not an integer.	(6)
	(a)	Prove the Rodrigue's formula $P_{i}(x) = \frac{1}{2^{i} l!} \frac{d}{dx^{i}} (x^{2} - 1)^{i}$,	(6)
	(b)	where $l =$ positive integer Prove that the solutions of Bessel's differential equation $J_m(x)$ and $J_{-m}(x)$ are linearly dependent if 'm' is an integer. OR	(7)
	(b)	Show that (i) $\int_{-1}^{+1} x^m P_n(x) dx = 0$, for $m < n$, and (ii) $\int_{1}^{+1} x^m P_n(x) dx = 2^{n+1} \frac{n!}{(2n+1)!}$, for $m = n$.	(7)
Q.2.	(a)	Derive Euler-Lagrange's differential equation by a variational procedure.	(7)
	(a) (b)	OR Describe in detail Brachistochrone (shortest time) problem. On the basis of electromechanical analogy, obtain Lagrangian for parallel L-C-R electric circuit. OR	(7) (5)
	(b)	Explain the method of Lagrange's undetermined multiplier.	(5)
Q-3	(a)	Write the radial wave equation for interior region in three dimensional square well potential. Hence obtain its admiss solution.	(6) sible
		OR White the sign value equation for the Anisotronic	(6)
		Write the eigen value equation for the Anisotropic oscillator. Hence obtain its eigen functions and eigen values.	(0)
	(b)	Write the radial wave equation for non-localized states (E > 0) of the three dimensional square well potential. Hence obtain admissible solutions.) (7) n its

OR

	(b)	solv	te the radial wave equation for hydrogen atom. Hence e it to obtain its eigen values.	(7)		
Q-4	(a)	Define eigen values and eigen functions of dynamical variable (6) \hat{A} in Hilbert space. Using ket vectors prove that the eigen value of a self adjoint operator is real, and the eigen functions belonging to different eigen values of a self adjoint operator are orthogonal.				
	(a)	adjoi	djoint operator. Discuss about why the self the djoint operator in Hilbert space is also called the Hermitian perator? Hence discuss the unitary operator in brief.			
	(b)	Explain the effect of unitary translations on a wave function (6) after translation of coordinate system. OR				
	(b)	Explain the effect of transformation of coordinate system on (6) a dynamical variable. Obtain the new dynamical variables \hat{p}_x and				
			fter the rotation of coordinate system about z-axis.			
	Q-5		ver in brief:	(10)		
		(i) (ii)	Write Hamilton's principle.			
		(iii)	Define phase space. What is a 'Hodograph'?			
		(iv)	Write an expression for projection operator, for continuous, in Hilbert space?	nuous		
	() <u>(11)</u>	(v) (vi)	For continuous bases in Hilbert space $\langle x x \rangle = \dots$ Write any two conditions that must be satisfied by the vectors in Hilbert space.	state		
		(vii) (viii)	The generating function for $J_n(x)$ is			
		(ix)	The spherical Bessel and Neumann functions are	. and		
		(x)	The eigen value of Isotropic oscillator is $E_n = \dots = X = X = X$			